Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
BMC Infect Dis ; 24(1): 160, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308222

RESUMEN

The pathological consequences of inflammation persist in people living with the human immunodeficiency virus (PLWH), regardless of the positive outcomes of highly active antiretroviral therapy (HAART). The current systematic review and meta-analysis aims to understand and explore the levels of high-sensitivity C-reactive protein (hs-CRP) and other cardiovascular disease (CVD)-risk factors including lipid profiles among PLWH on HAART. Major electronic databases including PubMed, Scopus, and Web of Science were searched to retrieve relevant global literature reporting on hs-CRP levels in PLWH on HAART. A total of twenty-two studies with an average participant age of 40 years were eligible for this systematic review and meta-analysis. Majority of the included studies were from Africa (n = 11), the United States (n = 6), and Europe (n = 5). Our systemic review showed that most studies reported increased levels of hs-CRP among PLWH on HAART when compared to controls (PLWH not on HAART or those without HIV), especially in studies from Africa. This was supported by a meta-analysis showing significantly elevated levels of hs-CRP in PLWH on HAART when compared to PLWH not on HAART (standardised mean difference [SMD] = 0.56; 95% CI = 0.10­1.01, z = 2.41; p = 0.02) or those without HIV (SMD = 1.19; 95% CI = 0.76­1.63, z = 5.35; p < 0.001). Where lipid profiles, as a major predictor for CVD risk, were also impaired in PLWH on HAART when compared to PLWH not on HAART and HIV-negative participants. In conclusion, elevated levels of hs-CRP and lipid levels are prevalent in PLWH on HAART, this may increase the risk of CVD complications, especially for those people living in Africa. However, more evidence in larger population studies is required to confirm these outcomes and unveil any possible clinical implications of HAART-induced modulation of hs-CRP levels in PLWH.


Asunto(s)
Enfermedades Cardiovasculares , Infecciones por VIH , Humanos , Adulto , Terapia Antirretroviral Altamente Activa , Proteína C-Reactiva , VIH , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/complicaciones , Lípidos
2.
Pflugers Arch ; 476(3): 283-293, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38044359

RESUMEN

High-fat diet (HFD) feeding in rodents has become an essential tool to critically analyze and study the pathological effects of obesity, including mitochondrial dysfunction and insulin resistance. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) regulates cellular energy metabolism to influence insulin sensitivity, beyond its active role in stimulating mitochondrial biogenesis to facilitate skeletal muscle adaptations in response to HFD feeding. Here, some of the major electronic databases like PubMed, Embase, and Web of Science were accessed to update and critically discuss information on the potential role of PGC-1α during metabolic adaptations within the skeletal muscle in response to HFD feeding in rodents. In fact, available evidence suggests that partial exposure to HFD feeding (potentially during the early stages of disease development) is associated with impaired metabolic adaptations within the skeletal muscle, including mitochondrial dysfunction and reduced insulin sensitivity. In terms of implicated molecular mechanisms, these negative effects are partially associated with reduced activity of PGC-1α, together with the phosphorylation of protein kinase B and altered expression of genes involving nuclear respiratory factor 1 and mitochondrial transcription factor A within the skeletal muscle. Notably, metabolic abnormalities observed with chronic exposure to HFD (likely during the late stages of disease development) may potentially occur independently of PGC-1α regulation within the muscle of rodents. Summarized evidence suggests the causal relationship between PGC-1α regulation and effective modulations of mitochondrial biogenesis and metabolic flexibility during the different stages of disease development. It further indicates that prominent interventions like caloric restriction and physical exercise may affect PGC-1α regulation during effective modulation of metabolic processes.


Asunto(s)
Resistencia a la Insulina , Enfermedades Mitocondriales , Animales , Dieta Alta en Grasa , Músculo Esquelético/metabolismo , Modelos Animales , Enfermedades Mitocondriales/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
3.
Metabolism ; 150: 155709, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37866810

RESUMEN

The discovery and rejuvenation of metabolically active brown adipose tissue (BAT) in adult humans have offered a new approach to treat obesity and metabolic diseases. Beyond its accomplished role in adaptive thermogenesis, BAT secretes signaling molecules known as "batokines", which are instrumental in regulating whole-body metabolism via autocrine, paracrine, and endocrine action. In addition to the intrinsic BAT metabolite-oxidizing activity, the endocrine functions of these molecules may help to explain the association between BAT activity and a healthy systemic metabolic profile. Herein, we review the evidence that underscores the significance of BAT-derived metabolites, especially highlighting their role in controlling physiological and metabolic processes involving thermogenesis, substrate metabolism, and other essential biological processes. The conversation extends to their capacity to enhance energy expenditure and mitigate features of obesity and its related metabolic complications. Thus, metabolites derived from BAT may provide new avenues for the discovery of metabolic health-promoting drugs with far-reaching impacts. This review aims to dissect the complexities of the secretory role of BAT in modulating local and systemic metabolism in metabolic health and disease.


Asunto(s)
Tejido Adiposo Pardo , Enfermedades Metabólicas , Humanos , Tejido Adiposo Pardo/metabolismo , Obesidad/metabolismo , Metabolismo Energético/fisiología , Enfermedades Metabólicas/metabolismo , Transducción de Señal , Termogénesis/fisiología
4.
Life Sci ; 332: 122125, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769808

RESUMEN

Sarcopenia remains one of the major pathological features of type 2 diabetes (T2D), especially in older individuals. This condition describes gradual loss of muscle mass, strength, and function that reduces the overall vitality and fitness, leading to increased hospitalizations and even fatalities to those affected. Preclinical evidence indicates that dysregulated mitochondrial dynamics, together with impaired activity of the NADPH oxidase system, are the major sources of oxidative stress that drive skeletal muscle damage in T2D. While patients with T2D also display relatively higher levels of circulating inflammatory markers in the serum, including high sensitivity-C-reactive protein, interleukin-6, and tumor necrosis factor-α that are independently linked with the deterioration of muscle function and sarcopenia in T2D. In fact, beyond reporting on the pathological consequences of both oxidative stress and inflammation, the current review highlights the importance of strengthening intracellular antioxidant systems to preserve muscle mass, strength, and function in individuals with T2D.

5.
World J Diabetes ; 14(3): 130-146, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37035220

RESUMEN

Insulin resistance and pancreatic ß-cell dysfunction are major pathological mechanisms implicated in the development and progression of type 2 diabetes (T2D). Beyond the detrimental effects of insulin resistance, inflammation and oxidative stress have emerged as critical features of T2D that define ß-cell dysfunction. Predominant markers of inflammation such as C-reactive protein, tumor necrosis factor alpha, and interleukin-1ß are consistently associated with ß-cell failure in preclinical models and in people with T2D. Similarly, important markers of oxidative stress, such as increased reactive oxygen species and depleted intracellular antioxidants, are consistent with pancreatic ß-cell damage in conditions of T2D. Such effects illustrate a pathological relationship between an abnormal inflammatory response and generation of oxidative stress during the progression of T2D. The current review explores preclinical and clinical research on the patho-logical implications of inflammation and oxidative stress during the development of ß-cell dysfunction in T2D. Moreover, important molecular mechanisms and relevant biomarkers involved in this process are discussed to divulge a pathological link between inflammation and oxidative stress during ß-cell failure in T2D. Underpinning the clinical relevance of the review, a systematic analysis of evidence from randomized controlled trials is covered, on the potential therapeutic effects of some commonly used antidiabetic agents in modulating inflammatory makers to improve ß-cell function.

6.
Front Endocrinol (Lausanne) ; 14: 1114767, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875450

RESUMEN

Brown adipose tissue (BAT), a thermoregulatory organ known to promote energy expenditure, has been extensively studied as a potential avenue to combat obesity. Although BAT is the opposite of white adipose tissue (WAT) which is responsible for energy storage, BAT shares thermogenic capacity with beige adipose tissue that emerges from WAT depots. This is unsurprising as both BAT and beige adipose tissue display a huge difference from WAT in terms of their secretory profile and physiological role. In obesity, the content of BAT and beige adipose tissue declines as these tissues acquire the WAT characteristics via the process called "whitening". This process has been rarely explored for its implication in obesity, whether it contributes to or exacerbates obesity. Emerging research has demonstrated that BAT/beige adipose tissue whitening is a sophisticated metabolic complication of obesity that is linked to multiple factors. The current review provides clarification on the influence of various factors such as diet, age, genetics, thermoneutrality, and chemical exposure on BAT/beige adipose tissue whitening. Moreover, the defects and mechanisms that underpin the whitening are described. Notably, the BAT/beige adipose tissue whitening can be marked by the accumulation of large unilocular lipid droplets, mitochondrial degeneration, and collapsed thermogenic capacity, by the virtue of mitochondrial dysfunction, devascularization, autophagy, and inflammation.


Asunto(s)
Tejido Adiposo Beige , Obesidad , Humanos , Regulación de la Temperatura Corporal , Metabolismo Energético , Transporte Biológico
7.
Nutrients ; 15(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36839303

RESUMEN

Cardiovascular diseases (CVDs) continue to be the leading cause of death in people with diabetes mellitus. Severely suppressed intracellular antioxidant defenses, including low plasma glutathione (GSH) levels, are consistently linked with the pathological features of diabetes such as oxidative stress and inflammation. In fact, it has already been established that low plasma GSH levels are associated with increased risk of CVD in people with diabetes. Dietary supplements are widely used and may offer therapeutic benefits for people with diabetes at an increased risk of developing CVDs. However, such information remains to be thoroughly scrutinized. Hence, the current systematic review explored prominent search engines, including PubMed and Google Scholar, for updated literature from randomized clinical trials reporting on the effects of dietary supplements on plasma GSH levels in people with diabetes. Available evidence indicates that dietary supplements, such as coenzyme Q10, selenium, curcumin, omega-3 fatty acids, and vitamin E or D, may potentially improve cardiometabolic health in patients with diabetes. Such beneficial effects are related to enhancing plasma GSH levels and reducing cholesterol, including biomarkers of oxidative stress and inflammation. However, available evidence is very limited and additional clinical studies are still required to validate these findings, including resolving issues related to the bioavailability of these bioactive compounds.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Suplementos Dietéticos , Antioxidantes/farmacología , Diabetes Mellitus/tratamiento farmacológico , Glutatión , Estrés Oxidativo , Enfermedades Cardiovasculares/etiología , Inflamación/tratamiento farmacológico
9.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768561

RESUMEN

Brown adipose tissue (BAT) is increasingly recognized as the major therapeutic target to promote energy expenditure and ameliorate diverse metabolic complications. There is a general interest in understanding the pleiotropic effects of metformin against metabolic complications. Major electronic databases and search engines such as PubMed/MEDLINE, Google Scholar, and the Cochrane library were used to retrieve and critically discuss evidence reporting on the impact of metformin on regulating BAT thermogenic activity to ameliorate complications linked with obesity. The summarized evidence suggests that metformin can reduce body weight, enhance insulin sensitivity, and improve glucose metabolism by promoting BAT thermogenic activity in preclinical models of obesity. Notably, this anti-diabetic agent can affect the expression of major thermogenic transcriptional factors such as uncoupling protein 1 (UCP1), nuclear respiratory factor 1 (NRF1), and peroxisome-proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α) to improve BAT mitochondrial function and promote energy expenditure. Interestingly, vital molecular markers involved in glucose metabolism and energy regulation such as AMP-activated protein kinase (AMPK) and fibroblast growth factor 21 (FGF21) are similarly upregulated by metformin treatment in preclinical models of obesity. The current review also discusses the clinical relevance of BAT and thermogenesis as therapeutic targets. This review explored critical components including effective dosage and appropriate intervention period, consistent with the beneficial effects of metformin against obesity-associated complications.


Asunto(s)
Tejido Adiposo Pardo , Metformina , Humanos , Tejido Adiposo Pardo/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Metformina/metabolismo , Estudios de Factibilidad , Obesidad/metabolismo , Glucosa/metabolismo , Termogénesis , Metabolismo Energético , Proteína Desacopladora 1/metabolismo , Tejido Adiposo Blanco/metabolismo
10.
Biochimie ; 204: 33-40, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36067903

RESUMEN

Dyslipidemia is one of the major risk factors for the development of cardiovascular disease (CVD) in patients with type 2 diabetes (T2D). This metabolic anomality is implicated in the generation of oxidative stress, an inevitable process involved in destructive mechanisms leading to myocardial damage. Fortunately, commonly used drugs like statins can counteract the detrimental effects of dyslipidemia by lowering cholesterol to reduce CVD-risk in patients with T2D. Statins mainly function by blocking the production of cholesterol by targeting the mevalonate pathway. However, by blocking cholesterol synthesis, statins coincidently inhibit the synthesis of other essential isoprenoid intermediates of the mevalonate pathway like farnesyl pyrophosphate and coenzyme Q10 (CoQ10). The latter is by far the most important co-factor and co-enzyme required for efficient mitochondrial oxidative capacity, in addition to its robust antioxidant properties. In fact, supplementation with CoQ10 has been found to be beneficial in ameliorating oxidative stress and improving blood flow in subjects with mild dyslipidemia.. Beyond discussing the destructive effects of oxidative stress in dyslipidemia-induced CVD-related complications, the current review brings a unique perspective in exploring the mevalonate pathway to block cholesterol synthesis while enhancing or maintaining CoQ10 levels in conditions of dyslipidemia. Furthermore, this review disscusses the therapeutic potential of bioactive compounds in targeting the downstream of the mevalonate pathway, more importantly, their ability to block cholesterol while maintaining CoQ10 biosynthesis to protect against the destructive complications of dyslipidemia.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Dislipidemias , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Ubiquinona/uso terapéutico , Ubiquinona/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ácido Mevalónico , Colesterol , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/etiología , Dislipidemias/complicaciones , Dislipidemias/tratamiento farmacológico
11.
Life Sci ; 313: 121273, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36521548

RESUMEN

Unlike the white adipose tissue (WAT) which mainly stores excess energy as fat, brown adipose tissue (BAT) has become physiologically important and therapeutically relevant for its prominent role in regulating energy metabolism. The current study makes use of an established animal model of type 2 diabetes (T2D) db/db mice to determine the effect of the disease progression on adipose tissue morphology and gene regulatory signatures. Results showed that WAT and BAT from db/db mice display a hypertrophied phenotype that is consistent with increased expression of the pro-inflammatory cytokine, tumor necrosis factor-alpha (Tnf-α). Moreover, BAT from both db/db and non-diabetic db/+ control mice displayed an age-related impairment in glucose homeostasis, inflammatory profile, and thermogenic regulation, as demonstrated by reduced expression of genes like glucose transporter (Glut-4), adiponectin (AdipoQ), and uncoupling protein 1 (Ucp-1). Importantly, gene expression of the batokines regulating sympathetic neurite outgrowth and vascularization, including bone morphogenic protein 8b (Bmp8b), fibroblast growth factor 21 (Fgf-21), neuregulin 4 (Nrg-4) were altered in BAT from db/db mice. Likewise, gene expression of meteorin-like (Metrnl), growth differentiation factor 15 (Gdt-15), and C-X-C motif chemokine-14 (Cxcl-14) regulating pro- and anti-inflammation were altered. This data provides some new insights into the pathophysiological mechanisms involved in BAT hypertrophy (or whitening) and the disturbances of batokines during the development and progression of T2D. However, these are only preliminary results as additional experiments are necessary to confirm these findings in other experimental models of T2D.


Asunto(s)
Tejido Adiposo Pardo , Diabetes Mellitus Tipo 2 , Progresión de la Enfermedad , Animales , Ratones , Adiponectina/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Ratones Endogámicos C57BL , Termogénesis
12.
Front Nutr ; 9: 1011002, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386907

RESUMEN

Background: Vitamin C is one of the most consumed dietary compounds and contains abundant antioxidant properties that could be essential in improving metabolic function. Thus, the current systematic review analyzed evidence on the beneficial effects of vitamin C intake on cardiovascular disease (CVD)-related outcomes in patients with diabetes or metabolic syndrome. Methods: To identify relevant randomized control trials (RCTs), a systematic search was run using prominent search engines like PubMed and Google Scholar, from beginning up to March 2022. The modified Black and Downs checklist was used to assess the quality of evidence. Results: Findings summarized in the current review favor the beneficial effects of vitamin C intake on improving basic metabolic parameters and lowering total cholesterol levels to reduce CVD-risk in subjects with type 2 diabetes or related metabolic diseases. Moreover, vitamin C intake could also reduce the predominant markers of inflammation and oxidative stress like C-reactive protein, interleukin-6, and malondialdehyde. Importantly, these positive outcomes were consistent with improved endothelial function or increased blood flow in these subjects. Predominantly effective doses were 1,000 mg/daily for 4 weeks up to 12 months. The included RCTs presented with the high quality of evidence. Conclusion: Clinical evidence on the beneficial effects of vitamin C intake or its impact on improving prominent markers of inflammation and oxidative stress in patients with diabetes is still limited. Thus, more RCTs are required to solidify these findings, which is essential to better manage diabetic patients at increased risk of developing CVD.

13.
Antioxidants (Basel) ; 11(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36290794

RESUMEN

Lipid peroxidation, including its prominent byproducts such as malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE), has long been linked with worsened metabolic health in patients with type 2 diabetes (T2D). In fact, patients with T2D already display increased levels of lipids in circulation, including low-density lipoprotein-cholesterol and triglycerides, which are easily attacked by reactive oxygen molecules to give rise to lipid peroxidation. This process severely depletes intracellular antioxidants to cause excess generation of oxidative stress. This consequence mainly drives poor glycemic control and metabolic complications that are implicated in the development of cardiovascular disease. The current review explores the pathological relevance of elevated lipid peroxidation products in T2D, especially highlighting their potential role as biomarkers and therapeutic targets in disease severity. In addition, we briefly explain the implication of some prominent antioxidant enzymes/factors involved in the blockade of lipid peroxidation, including termination reactions that involve the effect of antioxidants, such as catalase, coenzyme Q10, glutathione peroxidase, and superoxide dismutase, as well as vitamins C and E.

14.
Biomed Pharmacother ; 153: 113439, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36076554

RESUMEN

Diabetic neuropathy is a risk factor for developing complications such as autonomic cardiovascular disease, osteoarthropathy, foot ulcers, and infections, which may be the direct cause of death. Even worse, patients plagued by this condition display painful neuropathic symptoms that are usually severe and frequently lead to depression, anxiety, and sleep disarrays, eventually leading to a poor quality of life. There is a general interest in evaluating the therapeutic properties of topical capsaicin cream as an effective agent for pain relief in these patients. As such, the current review makes use of major search engines like PubMed and Google Scholar, to bring an updated analysis of clinical studies reporting on the therapeutic effects of capsaicin in patients with painful diabetic neuropathy. In fact, most of the summarized literature indicates that topical capsaicin (0.075 %) cream, when applied to the painful areas for approximately 8 weeks, can reduce pain, which may lead to clinical improvements in walking, working, and sleeping in patients with painful diabetic neuropathy. The current review also discusses essential information on capsaicin, including its source, bioavailability profile, as well as treatment doses and duration, to highlight its therapeutic potential.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Administración Tópica , Capsaicina/efectos adversos , Diabetes Mellitus/tratamiento farmacológico , Humanos , Dolor/tratamiento farmacológico , Calidad de Vida
15.
Crit Rev Food Sci Nutr ; : 1-23, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35916835

RESUMEN

Epigallocatechin gallate (EGCG) is one of the most abundant and powerful flavonoids contained in green tea. Because of the global increase in green tea consumption, there has been a general interest in understanding its health benefits, including its bioactive compounds like EGCG. Indeed, preclinical evidence already indicates that EGCG demonstrated a strong antioxidant and anti-inflammatory properties that could be essential in protecting against metabolic syndrome. The current review explores clinical evidence reporting on the beneficial effects of EGCG supplementation in obese subjects or patients with diverse metabolic complications that include type 2 diabetes and cardiovascular disease. The discussion incorporates the impact of different formulations of EGCG, as well as the effective doses and treatment duration. Importantly, besides highlighting the potential use of EGCG as a nutraceutical, the current review also discusses crucial evidence related to its pharmaceutical development as an agent to hinder metabolic diseases, including its bioavailability and metabolism profile, as well as its well-known biological properties.

16.
Front Pharmacol ; 13: 940572, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35899107

RESUMEN

Moringa oleifera is one of the popular plants that have shown significant health benefits. Certainly, preclinical evidence (predominantly from animal models) summarized in the current review supports the beneficial effects of Moringa oleifera leaf extracts in combating the prominent characteristic features of diabetes mellitus. This includes effective control of blood glucose or insulin levels, enhancement of insulin tissue sensitivity, improvement of blood lipid profiles, and protecting against organ damage under sustained conditions of hyperglycemia. Interestingly, as major complications implicated in the progression of diabetes, including organ damage, Moringa oleifera leaf and seed extracts could efficiently block the detrimental effects of oxidative stress and inflammation in these preclinical models. Notably, these extracts (especially leaf extracts) showed enhanced effects in strengthening intracellular antioxidant defences like catalase, superoxide dismutase, and glutathione to lower lipid peroxidation products and reduce prominent pro-inflammatory markers such as tumor necrosis factor-α, interleukin (1L)-ß, IL-6, monocyte chemoattractant protein-1 and nitric oxide synthase. From animal models of diabetes, the common and effective dose of leaf extracts of Moringa oleifera was 100-300 mg/kg, within the treatment duration of 2-8 weeks. Whereas supplementation with approximately 20 g leaf powder of Moringa oleifera for at least 2 weeks could improve postprandial blood glucose in subjects with prediabetes or diabetes. Although limited clinical studies have been conducted on the antidiabetic properties of Moringa oleifera, current findings provide an important platform for future research directed at developing this plant as a functional food to manage diabetic complications.

17.
Genes (Basel) ; 13(4)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35456437

RESUMEN

In this review, we have gathered and analyzed the available genetic evidence on the association between the methylenetetrahydrofolate reductase gene (MTHFR), rs1801133 and the risk of Hypertension (HTN) in African populations, which was further compared to the global data evidence. This review was reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol and Human Genome Epidemiology Network (HuGENet) guidelines. Literature was retrieved through major search databases, including PubMed, Scopus, Web of Science, and African Journal Online. We identified 64 potential studies, of which 4 studies were from the African continent and 60 studies were reported globally. Among the studies conducted in Africa, only two (n = 2) reported a significant association between the MTHFR (rs1801133) and the risk of developing HTN. Only one (n = 1) study population was purely composed of black Africans, while others were of other ethnicities. Among studies conducted in other continents (n = 60), forty-seven (n = 47) studies reported a positive association between MTHFR (rs1801133) and the risk of developing HTN, whereas the remaining studies (n = 14) did not show a significant association. Available literature suggests an apparent association between rs1801133 and HTN in global regions; however, such information is still scarce in Africa, especially in the black African population.


Asunto(s)
Hipertensión , Metilenotetrahidrofolato Reductasa (NADPH2) , Población Negra/genética , Predisposición Genética a la Enfermedad , Humanos , Hipertensión/epidemiología , Hipertensión/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Polimorfismo de Nucleótido Simple , Factores de Riesgo
18.
Life Sci ; 297: 120467, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35271881

RESUMEN

Skeletal muscle insulin resistance and mitochondrial dysfunction are some of the major pathological defects implicated in the development of type 2 diabetes (T2D). Therefore, it has become necessary to understand how common interventions such as physical exercise and caloric restriction affect metabolic function, including physiological processes that implicate skeletal muscle dysfunction within a state of T2D. This review critically discusses evidence on the impact of physical exercise and caloric restriction on markers of insulin resistance and mitochondrial dysfunction within the skeletal muscle of patients with T2D or related metabolic complications. Importantly, relevant information from clinical studies was acquired through a systematic approach targeting major electronic databases and search engines such as PubMed, Google Scholar, and Cochrane library. The reported evidence suggests that interventions like physical exercise and caloric restriction, within a duration of approximately 2 to 4 months, can improve insulin sensitivity, in part by targeting the phosphoinositide 3-kinases/protein kinase B pathway in patients with T2D. Furthermore, both physical exercise and caloric restriction can effectively modulate markers related to improved mitochondrial function and dynamics. This was consistent with an improved modulation of mitochondrial oxidative capacity and reduced production of reactive oxygen species in patients with T2D or related metabolic complications. However, such conclusions are based on limited evidence, additional clinical trials are required to better understand these interventions on pathological mechanisms of T2D and related abnormalities.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Restricción Calórica , Diabetes Mellitus Tipo 2/metabolismo , Ejercicio Físico/fisiología , Humanos , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo
19.
Pharmacol Res ; 178: 106163, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35257898

RESUMEN

Chronic inflammation remains an essential complication in the pathogenesis and aggravation of metabolic diseases. There is a growing interest in the use of medicinal plants or food-derived bioactive compounds for their antioxidant and anti-inflammatory properties to improve metabolic function. For example, rutin, a flavonol derivative of quercetin that is found in several medicinal plants and food sources has displayed therapeutic benefits against diverse metabolic diseases. Here, we searched the major electronic databases and search engines such as PubMed/MEDLINE, Scopus and Google Scholar to systematically extract and critically discuss evidence reporting on the impact of rutin against metabolic diseases by affecting inflammation. In fact, available preclinical evidence suggests that rutin, through its strong antioxidant properties, can effectively ameliorate inflammation by reducing the levels of pro-inflammatory markers such as tumor necrosis factor-α, interleukin (IL)-6, cyclooxygenase-2, IL-1ß, as well as blocking nuclear factor kappa B (NF-κB)/mitogen-activated protein kinase (MAPK) activation to improve metabolic function. Notably, although clinical data on the impact of rutin on inflammation is limited, food-derived sources rich in this flavonol such as Fagopyrum tataricum, Coffea arabica and Aspalathus linearis (rooibos) have shown promise in improving metabolic function, in part by reducing markers of oxidative stress and inflammation. However, additional studies are still required to confirm the therapeutic properties of rutin in a clinical setting, including the enhancement of it low bioavailability profile.


Asunto(s)
Antioxidantes , Rutina , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-6/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Rutina/farmacología , Rutina/uso terapéutico
20.
Biomed Pharmacother ; 147: 112638, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35063860

RESUMEN

Currently, liver transplantation is considered as the definitive treatment option for individuals with complete liver failure. However, the detrimental effects of oxidative stress and inflammation remain the predominant feature that drives hepatic ischemia-reperfusion injury during liver transplantation. As such, therapeutic drugs that hinder oxidative stress and attenuate inflammation, have become ideal targets to curb liver injuries during transplantation. The current review analyses available clinical evidence on the importance of using N-acetyl cysteine (NAC) during liver transplantation. Thus, prominent online search engines such as PubMed and Google Scholar were accessed to retrieve literature from randomized clinical trials reporting on the use of NAC during liver transplantation. Overwhelming evidence suggests that established therapeutic properties of NAC, through enhancing endogenous antioxidants like glutathione to block oxidative stress and attenuate inflammation, remain essential to improve liver function in patients undergoing liver transportation. However, to the contrary, some clinical studies did not show any beneficial effects in patients receiving NAC during liver transplantation. Thus, such controversies, in addition to discussing the implications of oxidative stress and inflammation in relation to hepatic ischemia-reperfusion injury remain the major subject of the current review.


Asunto(s)
Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Inflamación/tratamiento farmacológico , Trasplante de Hígado/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Humanos , Inflamación/patología , Fallo Hepático/patología , Estrés Oxidativo/fisiología , Ensayos Clínicos Controlados Aleatorios como Asunto , Daño por Reperfusión/patología , Daño por Reperfusión/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...